Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice.
نویسندگان
چکیده
Pseudomonas aeruginosa 7NSK2 induces resistance in dicots through a synergistic interaction of the phenazine pyocyanin and the salicylic acid-derivative pyochelin. Root inoculation of the monocot model rice with 7NSK2 partially protected leaves against blast disease (Magnaporthe grisea) but failed to consistently reduce sheath blight (Rhizoctonia solani). Only mutations interfering with pyocyanin production led to a significant decrease in induced systemic resistance (ISR) to M. grisea, and in trans complementation for pyocyanin production restored the ability to elicit ISR. Intriguingly, pyocyanin-deficient mutants, unlike the wild type, triggered ISR against R. solani. Hence, bacterial pyocyanin plays a differential role in 7NSK2-mediated ISR in rice. Application of purified pyocyanin to hydroponically grown rice seedlings increased H202 levels locally on the root surface as well as a biphasic H202 generation pattern in distal leaves. Co-application of pyocyanin and the antioxidant sodium ascorbate alleviated the opposite effects of pyocyanin on rice blast and sheath blight development, suggesting that the differential effectiveness of pyocyanin with respect to 7NSK2-triggered ISR is mediated by transiently elevated H202 levels in planta. The cumulative results suggest that reactive oxygen species act as a double-edged sword in the interaction of rice with the hemibiotroph M. grisea and the necrotroph R. solani.
منابع مشابه
Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin.
The rhizobacterium Pseudomonas aeruginosa 7NSK2 produces secondary metabolites such as pyochelin (Pch), its precursor salicylic acid (SA), and the phenazine compound pyocyanin. Both 7NSK2 and mutant KMPCH (Pch-negative, SA-positive) induced resistance to Botrytis cinerea in wild-type but not in transgenic NahG tomato. SA-negative mutants of both strains lost the capacity to induce resistance. O...
متن کاملEffect of fetal and adult bovine serum on pyocyanin production in Pseudomonas aeruginosa isolated from clinical and soil samples
Objective(s): Pyocyanin is a blue-greenish redox-active pigment, produced by Pseudomonas aeruginosa, with a wide range of biological and biotechnological applications. Pyocyanin biosynthesis is regulated by the quorum-sensing (QS) system in which the expression of QS genes and QS-controlled virulence genes may be affected by serum as a complex medium. In the current study, effects of adult bovi...
متن کاملIsolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea.
AIMS Isolation of bacterial antagonist for use in the biological control of phytopathogenic fungi like rice blast fungus, Magnaporthe grisea, and to further purify and characterize the antifungal molecule produced by the antagonist. METHODS AND RESULTS Bacterial antagonist exhibiting highest antifungal activity against the rice blast fungus M. grisea was isolated from soil and identified as B...
متن کاملVoltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes.
In Pseudomonas aeruginosa, chemical deconvolution of the pyocyanin voltammetric signal allows its expression to be observed simultaneously with the quorum sensing molecule Pseudomonas quinolone signal (PQS). Such analysis has revealed that PQS might protect pyocyanin from self-oxidation, but also exert a pro-oxidative effect on pyocyanin under oxidative conditions to produce additional redox me...
متن کاملNanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean.
Root colonization by specific nonpathogenic bacteria can induce a systemic resistance in plants to pathogen infections. In bean, this kind of systemic resistance can be induced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 and depends on the production of salicylic acid by this strain. In a model with plants grown in perlite we demonstrated that Pseudomonas aeruginosa 7NSK2-induced resista...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant-microbe interactions : MPMI
دوره 19 12 شماره
صفحات -
تاریخ انتشار 2006